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Abstract 

 
This paper presents an analysis of the algorithms used 
for generating 3D structures from 2D CT-Scan 
Datasets. This is achieved by developing an 
implementation of Marching Cubes, a surface 
construction algorithm that’s currently the standard 
used for 3D surface construction in the medical 
visualization industry. 
 
 
1. Introduction 
 
X-ray Computed Tomography (CT) is a medical 
imaging technology used by doctors to diagnose areas 
of interest within the body non-invasively. CT-Scans 
of patients are generated by having an X-ray source 
that rotates around a patient; X-ray sensors are 
positioned on the opposite side of the circle from the 
X-ray source. Many data scans are progressively taken 
as the object is gradually passed through the gantry. 
They are combined together by the mathematical 
procedure known as tomographic reconstruction [9, 
10, 11], which generates two-dimensional (2D) images 
that doctors use when diagnosing patients. 
 
Yet 2D images cannot accurately convey the 
complexities of human anatomy. Interpretation of 2D 
complex anatomy requires special training and though 
radiologists are trained to interpret these images, they 
often find themselves having to communicate their 
interpretations to a physician, who may have difficulty 
imagining the three-dimensional (3D) anatomy [3]. 
However, this same anatomy can be visualized as a 3D 
image, allowing doctors to properly see the volume 
and shape of features that they may be interested in 
analyzing, such as the brachial tree, a particular tumor 
or other features of interest [3]. 
 

2. CT-Scan acquisition considerations for 
3D visualization 
 
In order for any 3D surface construction algorithm to 
properly work, it is important to address the special 
considerations required of the set of slices for the 
algorithm to work. Of the different concerns that are 
normally under consideration for X-Ray CT – fan-
beam reconstruction, spiral/helical CT, multi-slice 
spiral CT – very few directly affect the nature of the 
3D structures that are produced. As long as the 2D 
slices have the same resolution, spatial orientation, and 
are stored sequentially, then the 3D visualization 
should generate an accurate representation. 
 
It is important for each image to have the same 
resolution because the algorithm assumes that 
corresponding pixels in each slice will correspond to 
the next pixel value in that same physical direction. 
Similarly, if the spatial orientation of the images is 
different (rotated, flipped, etc.) then corresponding 
pixels in different slices will not generate an accurate 
visualization. If the order of the slices does not 
accurately represent the continuous space in which the 
dataset was captured, the visualized structure will be 
inaccurate. For example, if the first half of a set of 
slices taken of the head and torso was mistakenly 
placed behind the second half, the structure would 
appear to have the head attached to the bottom of the 
torso. However, as long as these conditions are met, 
any algorithm used will produce structures that 
accurately represent the imaged space. 
 
 
 
 
 
 
 
 



3. Rendering 3D Surfaces 
 
Currently, there are two general models used for 
rendering 3D images. These are: cross-section 
rendering and threshold rendering. Each of these 
techniques model the interaction of x-rays within the 
volumetric rendering [8]. In cross-section rendering, 
the volumetric reconstruction is considered opaque. 
The user then chooses which areas to render by adding 
new light sources within the 3D environment and 
illuminating the cross-sectional slices [8]. In threshold 
rendering, the user determines what to render by 
selecting a range of density value, and discarding all 
values that fall outside the desired range. Because it is 
able to generate a 3D view of the desired density’s 
surface, threshold rendering is the standard rendering 
model used in the medical industry.  
 
There are also different methods of obtaining 3D 
visualization from a set of 2D slices. One of the 
earliest techniques extracted the contours of each 
surface, and from these contours generated several 
triangles that connect each slice together. While 
effective, this technique fails when certain ambiguities, 
like multiple contours in each slice, are present. Other 
3D generation techniques include: ray casting through 
a surface and rendering the hue lightness to display the 
volume [6], rendering the density volume rather than 
the surface [7], and others. However, these techniques 
discard useful information that is crucial to render a 
3D surface well.  

 
4. Marching Cubes Algorithm 
 
The current standard algorithm for 3D surface 
construction is the Marching Cubes algorithm, 
developed by General Electric in 1986 as an alternative 
to contemporary methods of 3D surface construction. 
The algorithm implements threshold rendering in order 
to generate “triangle models of constant density 
surfaces from 3D medical data” [4]. In our research, 
we were unable to determine whether CT-Scanners 
such as the GE LightSpeed Plus implement this 
algorithm, due to the lack of disclosure on behalf of 
GE.  However, we can infer that GE implements the 
Marching Cubes algorithm, as they are the recipient of 
the software patent of the same algorithm [2]. 
 
A similar technique known as “Marching 
Tetrahedrons” was develop to circumvent the patent, 
and has been implemented throughout the medical 
visualization industry. Because the patent over 

Marching Cubes has expired, one can expect the 
technique to be used more prominently in industry.  
 
4.1. One Cube 
 
At the basic level, the Marching Cubes algorithm takes 
eight scalar values from two adjacent slices of our 
dataset to form the vertices of an imaginary cube. After 
establishing our imaginary cube, we compare the value 
of a single vertex of our imaginary cube against some 
desired value, also known as an isovalue. If the value 
of the vertex is less than or equal to our isovalue, we 
can then say it falls within (or on) the surface. 
Otherwise, it falls outside the surface. We repeat this 
operation with the other 7 vertices to determine which 
points are inside or outside the surface we want to 
render. Once we determine which parts of the cube fall 
within the desired surface, we then create a topology of 
the surface within the cube [4]. 
 
Because there are eight vertices per cube and only two 
logical states (inside or outside) per vertex, there are 
256 ways a surface can intersect a single cube. While 
triangulating the 256 possibilities for each imaginary 
cube is feasible, this is not recommended because 
triangulating the 256 possibilities tends to be tedious 
and error-prone [4]. For example, the topology of a 
triangulated surface remains the same when the 
relationships of the surface values are inverted [4]. 
This reduces the number of possible cases from 256 to 
128. Also, because there’s rotational symmetry within 
some of the 128 cases, we can reduce the number of 
analyzed cases from 128 to 14, and rotate the 
appropriate case when necessary. Figure 1 illustrates 
the 14 possible configurations in which a surface can 
intersect a cube. Each black dot at a cube’s vertex 
represents the position in which a surface intersects 
with the cube, and within the cube the corresponding 
surface is generated. Figure 1 also highlights the 
simplicity of the Marching Cubes algorithm. By just 
analyzing 8 vertex values, we can generate a precise 
surface that can be expressed as a combination of 5 or 
less triangles. 



 
Figure 1: Triangulated Cubes 

 
4.2. Multiple Cubes 
 
When applying the algorithm to multiple cubes, the 
same approach is taken for each individual cube as 
described in the previous section. Looping through the 
cube space, one cube at a time, triangles are calculated 
for each. However, it is important to note that the 
relationship between cubes is that every cube shares 4 
vertices with each cube adjacent to it [4]. This can be 
seen in Figure 2 where the vertices 0, 1, 2, and 3 touch 
both cubes. 
 

 
Figure 2: Adjacent marching cubes with connected 
isosurface 

 
In this way, cubes are connected to each other because 
their vertices are overlapped. This ensures that 
calculating one cube at a time will result in the creation 
of the same surface regardless of the order in which 
cubes are traversed. In Figure 2, this concept can be 
seen taking shape as the two surfaces in each cube are 
connected at their shared face. 
 
In order to view different structures within slices, one 
changes the isovalue parameter of the algorithm. This 
effectively tells the algorithm to create polygons out of 
a different range of pixel values. For example, if a 
tumor clearly appears in slices with sharp contrast 
between itself and normal tissue, one can visualize the 
tumor by changing the range of isovalues to match the 
gray levels of the tumor. Or if it is important to view a 
broken rib, one can set the isovalues to that specific 
range. Therefore changing the isovalue allows 
whoever is analyzing the data to choose which 
structure they want to see. 
 
5. Implementation 
 
Our implementation of Marching Cubes takes in slices 
as uncompressed 8-bit Windows bitmap files and 
produces a 3D visualization of a cropped region in 
space. The fact that it is cropped needs to be 
emphasized because of restrictions on memory usage. 
If the space that the program is attempting to visualize 
is too large, the program does not run successfully.  
Furthermore, the purpose of this project was not to 
learn to process DICOM files and therefore we 
deferred that conversion task to Matlab. The rest of the 
implementation is written in C++ using OpenGL for 
graphics and GLUT (OpenGL Utility Toolkit) for 
window management and user interface. 
 
5.1. DICOM to Bitmap Converter 
 
Matlab has functions to read DICOM files included in 
the Image Processing Toolbox. We created a script that 
reads in a folder full of DICOM files, converts them to 
intensity images, performs histogram equalization, and 
outputs 8-bit bitmap BMP files. Figures 3 and 4 show 
some of the 2D CT-Scan slices that we used in our 
program. Figure 3 represents an image that has been 
processed with histogram equalization, while Figure 4 
shows the same slice without histogram equalization. 
We can see that Figure 3 shows the bone structure of 
the patient with greater contrast than Figure 4. 
 



 
Figure 3: Bitmap generated of DICOM Slice after 
Histogram Equalization 
 

 
Figure 4: Bitmap generated of DICOM Slice before 
Histogram Equalization 
 
5.2 Lookup Table 
 
To speed up the Marching Cubes algorithm, we 
created an index to an array that has pre-calculated 
each of the 256 possible surface intersection 
configurations. We then assign the scalar value of each 
vertex a bit in an 8-bit integer. If the vertex’s value 
falls within the range of our isovalue, we then set the 
corresponding bit to 1. Otherwise the same bit is set to 

0. The final value of this 8-bit integer is the 
corresponding surface intersection configuration.  
 
5.3. Loading the Raster Image 
 
We created a function called “populateRaster” to 
convert any image we import into a raster image. The 
raster image gets stored into an input variable called 
“data,” which is a 3-dimensional array with 
dimensions previously defined which match with the 
area of the original image that we want to import. We 
acquire the file name through two different variables: 
the first called “filename,” which is a character array 
that holds the name of the file, and the second called 
“extension,” which is a character array that holds the 
extension of the file. We also are able to crop from the 
larger dataset by determining the position along the x, 
y and z axes from where we begin importing. These 
are controlled through the startX, startY and startZ 
variables.  
 
To read images, we use the CImg libraries developed 
by David Tschumperlé. [cimg.sourceforge.net]. CImg 
is an open source library that can be used for image 
processing and is specifically designed to import 
numerous file formats, including the BMP files used 
by our program. 
 
5.4 Loading the Grid Space 
 
We created a function called “populateGridSpace” that 
defines a 3-dimensional array of our defined type 
GRIDCELL. GRIDCELL is an implementation of the 
imaginary cube used to describe the Marching Cubes 
algorithm. Each GRIDCELL is made up of 8 vertices, 
which are shared with other GRIDCELLs in our 3-
dimensional array. We then copy the values from our 
raster image to each corresponding vertex. 
 
5.5 Drawing Sequence 
 
We created a rendering function called “drawMe” that 
is used by OpenGL to render the 3D surface. We start 
by traversing our 3-dimensional array of GRIDCELLs 
and evaluating the 8 vertices of each GRIDCELL. We 
then call upon our Marching Cubes function to 
generate each triangle of the surface calculated and 
then render it appropriately through OpenGL. We also 
calculate the normal of each surface in order to enable 
Phong shading, allowing us to better discern the shape 
of the 3D image.  
  
 
 



6. Results 
 
The capabilities of our implementation were tested in a 
number of ways. Initially, raster data was forged to 
construct a cube which was then visualized by our 
program. After seeing this work successfully, we 
attempted visualization of a similar cube read from 10 
100x100 bitmap files. This was also a successful 
experiment. 
 
This lead to visualizing small regions from bitmaps of 
converted DICOM datasets. One such visualization is 
Figure 5, where a column crossing multiple ribs can be 
seen. This specific section was extracted starting from 
slice number 3 at pixel point (50, 300), covering a 
100x80x80 volume, using an isovalue of 250 with a 
threshold of +/- 5. 
 
After some memory optimization, we attempted the 
larger region that is seen in Figure 6. Figure 5 and 
Figure 6 are both of the same dataset. Figure 6 starts 
from slice number 3 at pixel point (57, 252), covering 
a 399x167x80 volume, using the same isovalue and 
threshold. 
 
7. Restrictions and possible improvements 
 
This implementation of Marching Cubes has inherent 
deficiencies due to the circumstances under which it 
was developed. However, future development can be 
done on this project to improve its performance and 
usability. 
 
A big problem with the most basic implementation is 
that it is terribly inefficient with memory use. In fact, if 
compiled in versions of Visual Studio earlier than 
.NET, the build process warns that the executable may 
not execute properly because of it. Because this was 
written as a proof of concept, algorithm efficiency and 
memory management were not high priorities. Despite 
this, attempts were made to optimize performance. 
These attempts consisted of eliminating rendering of 
triangles consisting of only zero-valued vertices, 
storing only triangles and normals in memory, and 
dynamically allocating temporary data arrays during 
initialization so that memory can be freed before any 
rendering begins. It would be best to modify this 
implementation further to improve memory usage, 
especially eliminating storage of triangles with only 
zero-valued vertices. 
 
Another area for improvement is the usability of this 
visualization tool. Currently, a user can only view one 

object at a time. Ideally, users would be able to select 
multiple objects to view concurrently. This 
improvement would be implemented by storing 
multiple structures obtained from multiple isovalues. 
Different objects would have different colors and 
would be easily identifiable in the visualization. 
 
8. Conclusion 
 
Visualization of medical data in 3D is a valuable tool 
that will assist physicians in diagnosing and treating 
patients with greater confidence. By using algorithms 
such as Marching Cubes, such visualizations can be 
generated with relative ease. Improvements in the 
graphical capabilities of computers and the 
optimizations of existing implementations of this 
algorithm will increase the visibility of such 
visualizations in regular medical practice.  
 
9. Figures 
 

 
Figure 5: Cropped section of ribs 
 



Figure 6: Large section of ribs and spine 
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