
Surface Construction Analysis using Marching Cubes

Burak Erem Nicolas Dedual
Northeastern University Northeastern University
 erem.b@neu.edu ndedual@ece.neu.edu

Abstract

This paper presents an analysis of the algorithms used
for generating 3D structures from 2D CT-Scan
Datasets. This is achieved by developing an
implementation of Marching Cubes, a surface
construction algorithm that’s currently the standard
used for 3D surface construction in the medical
visualization industry.

1. Introduction

X-ray Computed Tomography (CT) is a medical
imaging technology used by doctors to diagnose areas
of interest within the body non-invasively. CT-Scans
of patients are generated by having an X-ray source
that rotates around a patient; X-ray sensors are
positioned on the opposite side of the circle from the
X-ray source. Many data scans are progressively taken
as the object is gradually passed through the gantry.
They are combined together by the mathematical
procedure known as tomographic reconstruction [9,
10, 11], which generates two-dimensional (2D) images
that doctors use when diagnosing patients.

Yet 2D images cannot accurately convey the
complexities of human anatomy. Interpretation of 2D
complex anatomy requires special training and though
radiologists are trained to interpret these images, they
often find themselves having to communicate their
interpretations to a physician, who may have difficulty
imagining the three-dimensional (3D) anatomy [3].
However, this same anatomy can be visualized as a 3D
image, allowing doctors to properly see the volume
and shape of features that they may be interested in
analyzing, such as the brachial tree, a particular tumor
or other features of interest [3].

2. CT-Scan acquisition considerations for
3D visualization

In order for any 3D surface construction algorithm to
properly work, it is important to address the special
considerations required of the set of slices for the
algorithm to work. Of the different concerns that are
normally under consideration for X-Ray CT – fan-
beam reconstruction, spiral/helical CT, multi-slice
spiral CT – very few directly affect the nature of the
3D structures that are produced. As long as the 2D
slices have the same resolution, spatial orientation, and
are stored sequentially, then the 3D visualization
should generate an accurate representation.

It is important for each image to have the same
resolution because the algorithm assumes that
corresponding pixels in each slice will correspond to
the next pixel value in that same physical direction.
Similarly, if the spatial orientation of the images is
different (rotated, flipped, etc.) then corresponding
pixels in different slices will not generate an accurate
visualization. If the order of the slices does not
accurately represent the continuous space in which the
dataset was captured, the visualized structure will be
inaccurate. For example, if the first half of a set of
slices taken of the head and torso was mistakenly
placed behind the second half, the structure would
appear to have the head attached to the bottom of the
torso. However, as long as these conditions are met,
any algorithm used will produce structures that
accurately represent the imaged space.

3. Rendering 3D Surfaces

Currently, there are two general models used for
rendering 3D images. These are: cross-section
rendering and threshold rendering. Each of these
techniques model the interaction of x-rays within the
volumetric rendering [8]. In cross-section rendering,
the volumetric reconstruction is considered opaque.
The user then chooses which areas to render by adding
new light sources within the 3D environment and
illuminating the cross-sectional slices [8]. In threshold
rendering, the user determines what to render by
selecting a range of density value, and discarding all
values that fall outside the desired range. Because it is
able to generate a 3D view of the desired density’s
surface, threshold rendering is the standard rendering
model used in the medical industry.

There are also different methods of obtaining 3D
visualization from a set of 2D slices. One of the
earliest techniques extracted the contours of each
surface, and from these contours generated several
triangles that connect each slice together. While
effective, this technique fails when certain ambiguities,
like multiple contours in each slice, are present. Other
3D generation techniques include: ray casting through
a surface and rendering the hue lightness to display the
volume [6], rendering the density volume rather than
the surface [7], and others. However, these techniques
discard useful information that is crucial to render a
3D surface well.

4. Marching Cubes Algorithm

The current standard algorithm for 3D surface
construction is the Marching Cubes algorithm,
developed by General Electric in 1986 as an alternative
to contemporary methods of 3D surface construction.
The algorithm implements threshold rendering in order
to generate “triangle models of constant density
surfaces from 3D medical data” [4]. In our research,
we were unable to determine whether CT-Scanners
such as the GE LightSpeed Plus implement this
algorithm, due to the lack of disclosure on behalf of
GE. However, we can infer that GE implements the
Marching Cubes algorithm, as they are the recipient of
the software patent of the same algorithm [2].

A similar technique known as “Marching
Tetrahedrons” was develop to circumvent the patent,
and has been implemented throughout the medical
visualization industry. Because the patent over

Marching Cubes has expired, one can expect the
technique to be used more prominently in industry.

4.1. One Cube

At the basic level, the Marching Cubes algorithm takes
eight scalar values from two adjacent slices of our
dataset to form the vertices of an imaginary cube. After
establishing our imaginary cube, we compare the value
of a single vertex of our imaginary cube against some
desired value, also known as an isovalue. If the value
of the vertex is less than or equal to our isovalue, we
can then say it falls within (or on) the surface.
Otherwise, it falls outside the surface. We repeat this
operation with the other 7 vertices to determine which
points are inside or outside the surface we want to
render. Once we determine which parts of the cube fall
within the desired surface, we then create a topology of
the surface within the cube [4].

Because there are eight vertices per cube and only two
logical states (inside or outside) per vertex, there are
256 ways a surface can intersect a single cube. While
triangulating the 256 possibilities for each imaginary
cube is feasible, this is not recommended because
triangulating the 256 possibilities tends to be tedious
and error-prone [4]. For example, the topology of a
triangulated surface remains the same when the
relationships of the surface values are inverted [4].
This reduces the number of possible cases from 256 to
128. Also, because there’s rotational symmetry within
some of the 128 cases, we can reduce the number of
analyzed cases from 128 to 14, and rotate the
appropriate case when necessary. Figure 1 illustrates
the 14 possible configurations in which a surface can
intersect a cube. Each black dot at a cube’s vertex
represents the position in which a surface intersects
with the cube, and within the cube the corresponding
surface is generated. Figure 1 also highlights the
simplicity of the Marching Cubes algorithm. By just
analyzing 8 vertex values, we can generate a precise
surface that can be expressed as a combination of 5 or
less triangles.

Figure 1: Triangulated Cubes

4.2. Multiple Cubes

When applying the algorithm to multiple cubes, the
same approach is taken for each individual cube as
described in the previous section. Looping through the
cube space, one cube at a time, triangles are calculated
for each. However, it is important to note that the
relationship between cubes is that every cube shares 4
vertices with each cube adjacent to it [4]. This can be
seen in Figure 2 where the vertices 0, 1, 2, and 3 touch
both cubes.

Figure 2: Adjacent marching cubes with connected
isosurface

In this way, cubes are connected to each other because
their vertices are overlapped. This ensures that
calculating one cube at a time will result in the creation
of the same surface regardless of the order in which
cubes are traversed. In Figure 2, this concept can be
seen taking shape as the two surfaces in each cube are
connected at their shared face.

In order to view different structures within slices, one
changes the isovalue parameter of the algorithm. This
effectively tells the algorithm to create polygons out of
a different range of pixel values. For example, if a
tumor clearly appears in slices with sharp contrast
between itself and normal tissue, one can visualize the
tumor by changing the range of isovalues to match the
gray levels of the tumor. Or if it is important to view a
broken rib, one can set the isovalues to that specific
range. Therefore changing the isovalue allows
whoever is analyzing the data to choose which
structure they want to see.

5. Implementation

Our implementation of Marching Cubes takes in slices
as uncompressed 8-bit Windows bitmap files and
produces a 3D visualization of a cropped region in
space. The fact that it is cropped needs to be
emphasized because of restrictions on memory usage.
If the space that the program is attempting to visualize
is too large, the program does not run successfully.
Furthermore, the purpose of this project was not to
learn to process DICOM files and therefore we
deferred that conversion task to Matlab. The rest of the
implementation is written in C++ using OpenGL for
graphics and GLUT (OpenGL Utility Toolkit) for
window management and user interface.

5.1. DICOM to Bitmap Converter

Matlab has functions to read DICOM files included in
the Image Processing Toolbox. We created a script that
reads in a folder full of DICOM files, converts them to
intensity images, performs histogram equalization, and
outputs 8-bit bitmap BMP files. Figures 3 and 4 show
some of the 2D CT-Scan slices that we used in our
program. Figure 3 represents an image that has been
processed with histogram equalization, while Figure 4
shows the same slice without histogram equalization.
We can see that Figure 3 shows the bone structure of
the patient with greater contrast than Figure 4.

Figure 3: Bitmap generated of DICOM Slice after
Histogram Equalization

Figure 4: Bitmap generated of DICOM Slice before
Histogram Equalization

5.2 Lookup Table

To speed up the Marching Cubes algorithm, we
created an index to an array that has pre-calculated
each of the 256 possible surface intersection
configurations. We then assign the scalar value of each
vertex a bit in an 8-bit integer. If the vertex’s value
falls within the range of our isovalue, we then set the
corresponding bit to 1. Otherwise the same bit is set to

0. The final value of this 8-bit integer is the
corresponding surface intersection configuration.

5.3. Loading the Raster Image

We created a function called “populateRaster” to
convert any image we import into a raster image. The
raster image gets stored into an input variable called
“data,” which is a 3-dimensional array with
dimensions previously defined which match with the
area of the original image that we want to import. We
acquire the file name through two different variables:
the first called “filename,” which is a character array
that holds the name of the file, and the second called
“extension,” which is a character array that holds the
extension of the file. We also are able to crop from the
larger dataset by determining the position along the x,
y and z axes from where we begin importing. These
are controlled through the startX, startY and startZ
variables.

To read images, we use the CImg libraries developed
by David Tschumperlé. [cimg.sourceforge.net]. CImg
is an open source library that can be used for image
processing and is specifically designed to import
numerous file formats, including the BMP files used
by our program.

5.4 Loading the Grid Space

We created a function called “populateGridSpace” that
defines a 3-dimensional array of our defined type
GRIDCELL. GRIDCELL is an implementation of the
imaginary cube used to describe the Marching Cubes
algorithm. Each GRIDCELL is made up of 8 vertices,
which are shared with other GRIDCELLs in our 3-
dimensional array. We then copy the values from our
raster image to each corresponding vertex.

5.5 Drawing Sequence

We created a rendering function called “drawMe” that
is used by OpenGL to render the 3D surface. We start
by traversing our 3-dimensional array of GRIDCELLs
and evaluating the 8 vertices of each GRIDCELL. We
then call upon our Marching Cubes function to
generate each triangle of the surface calculated and
then render it appropriately through OpenGL. We also
calculate the normal of each surface in order to enable
Phong shading, allowing us to better discern the shape
of the 3D image.

6. Results

The capabilities of our implementation were tested in a
number of ways. Initially, raster data was forged to
construct a cube which was then visualized by our
program. After seeing this work successfully, we
attempted visualization of a similar cube read from 10
100x100 bitmap files. This was also a successful
experiment.

This lead to visualizing small regions from bitmaps of
converted DICOM datasets. One such visualization is
Figure 5, where a column crossing multiple ribs can be
seen. This specific section was extracted starting from
slice number 3 at pixel point (50, 300), covering a
100x80x80 volume, using an isovalue of 250 with a
threshold of +/- 5.

After some memory optimization, we attempted the
larger region that is seen in Figure 6. Figure 5 and
Figure 6 are both of the same dataset. Figure 6 starts
from slice number 3 at pixel point (57, 252), covering
a 399x167x80 volume, using the same isovalue and
threshold.

7. Restrictions and possible improvements

This implementation of Marching Cubes has inherent
deficiencies due to the circumstances under which it
was developed. However, future development can be
done on this project to improve its performance and
usability.

A big problem with the most basic implementation is
that it is terribly inefficient with memory use. In fact, if
compiled in versions of Visual Studio earlier than
.NET, the build process warns that the executable may
not execute properly because of it. Because this was
written as a proof of concept, algorithm efficiency and
memory management were not high priorities. Despite
this, attempts were made to optimize performance.
These attempts consisted of eliminating rendering of
triangles consisting of only zero-valued vertices,
storing only triangles and normals in memory, and
dynamically allocating temporary data arrays during
initialization so that memory can be freed before any
rendering begins. It would be best to modify this
implementation further to improve memory usage,
especially eliminating storage of triangles with only
zero-valued vertices.

Another area for improvement is the usability of this
visualization tool. Currently, a user can only view one

object at a time. Ideally, users would be able to select
multiple objects to view concurrently. This
improvement would be implemented by storing
multiple structures obtained from multiple isovalues.
Different objects would have different colors and
would be easily identifiable in the visualization.

8. Conclusion

Visualization of medical data in 3D is a valuable tool
that will assist physicians in diagnosing and treating
patients with greater confidence. By using algorithms
such as Marching Cubes, such visualizations can be
generated with relative ease. Improvements in the
graphical capabilities of computers and the
optimizations of existing implementations of this
algorithm will increase the visibility of such
visualizations in regular medical practice.

9. Figures

Figure 5: Cropped section of ribs

Figure 6: Large section of ribs and spine

10. References

[1] Bourke, P. “Polygonizing a Scalar Field”, May 1994,
http://
astronomy.swin.edu.au/~pbourke/modelling/polygonise/

[2] Cline, H., Lorensen, W., System and Method for the
Display of Surface Structures Contained Within the Interior
Region of a Solid Body, US Patent 4,710,876, to General
Electric Corp., Patent and Trademark Office, 1985

[3] Dedual, N., Kaeli, D., Johnson, B., Chen, G., Wolfgang,
J., “Visualization of 4D Computed Tomography Datasets”,
Proc. 2006 IEEE Southwest Symposium of Image Analysis
and Interpretation, March 2006

[4] Lorensen, W., Cline, H. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”, ACM
Computer Graphics Volume 21, Number 4, July 1987

[5] Johnson, C., Parker, S., Hansen, C., Kindlmann, G., and
Livnat, Y. “Interactive Simulation and Visualization” Center
for Scientific Computing and Imaging, University of Utah.
http://www.cs.utah.edu/sci

[6] Keppel, E. “Approximating Complex Surfaces by
Triangulation of Contour Lines” IBM J. Res. Develop 19, 1
(January 1975), p. 2-1

[7] Robb, R. A., Hoffman, E. A., Sinak, L. J., Harris, L. D.,
and Ritman, E. L. “High Speed Three-Dimensional X-Ray
Computed Tomography: The Dynamic Spiral
Reconstructor”, Proc. Of IEEE 71, 3 (March 1983), 308-319.

[8] Sabella, P. “ A Rendering Algorithm for Visualizing 3D
Scalar Fields” ACM Computer Graphics Volume 22, Number
4, August 1988

[9] Webb, A. Introduction to Biomedical Imaging, Wiley-
Interscience, 2003, p. 34 - 47

[10] “Computed Tomography”, Wikipedia, 17 April 2006,
http://en.wikipedia.org/wiki/Computed_Tomography

[11] “Tomographic Reconstruction”, Wikipedia, 24 March
2006,
http://en.wikipedia.org/wiki/Tomographic_reconstruction

